Science Encounters
Science Curriculum Project

October 25, 2019
Presenter: Ann Colvin
South Middlesex Opportunity Council

• SMOC’s mission is to improve the quality of life of low-income and disadvantaged individuals and families by advocating for their needs and rights; providing services; educating the community; building a community of support; participating in coalitions with other advocates and searching for new resources and partnerships.
Joan Brack Adult Learning Center

- Joan Brack Adult Learning Center (JBALC) at South Middlesex Opportunity Council (SMOC)
- Daytime ESL and GED classes for adults in Metrowest
- GED classes are 20 hours per week
- GED students may be:
 - Addressing basic needs
 - Motivated by external factors
Why Science Encounters?

- Prior curriculum focused on individual reading
What is Science Encounters?

- New curriculum centered around in-class lab activities
 - Students doing science
 - RLOs (Reusable Learning Objects)
 - ECRIF methodology
 - (Encounter, Clarify, Remember, Internalize, Fluently use)
Project Structure

• 12 Week Curriculum
 o 2 hour class, once per week
 o 10 students
 o Different science topic each week
 o Level: upper middle school

• Key Lesson Components
 o Content lesson with quick assessments built in
 o Lab activity
 o Journal (for lab reports and reflective writing)
Curriculum Topics

1. Cells
2. Genetics
3. Evolution
4. States of Matter
5. Physical Properties
6. Chemical Properties
7. Molecules & Compounds
8. Weather
9. Visible Light
10. Force
11. Energy Resources
12. Magnetic and Electrical Forces
Magnetic Forces

• The Earth has a magnetic field. Magnetic compasses point to the Earth’s magnetic north pole.
• The planetary and magnetic poles do not necessarily line up. In fact, the planet Uranus has a difference of about 60 degrees!
Neutrons

- No electrical charge
- Located inside the nucleus
- Included in the atom's mass
- 1 neutron = 1 atomic mass unit (amu)
- May not always be the same as the number of protons.
Plant Cells

- Cell Membrane
- **Cell Wall**
- Nucleus
- Cytoplasm
- Mitochondrion
- Vacuoles
- **Chloroplast**
Quick Assessments

Frequency Problem

The speed of a wave on a rope is 50 cm/s and its wavelength is 10 cm. What is its frequency?

1) Write the formula
2) Substitute and solve

Quick Sorting Activity

Decide if each situation is an example of kinetic or potential energy.

<table>
<thead>
<tr>
<th>Situation</th>
<th>Potential</th>
<th>Kinetic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standing on the end of a diving board.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Falling from the top of a ladder.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A rubber band pulled back as far as it can go.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lab Activities

Scientific Method as a framework for ALL lab activities

<table>
<thead>
<tr>
<th>Independent vs. Dependent Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent variable – changed by the scientist during the experiment</td>
</tr>
<tr>
<td>Dependent variable – changes in response to the changing independent variable</td>
</tr>
</tbody>
</table>

Using the Scientific Method to Investigate…

Research Question: If we mix iron filings with glue, water, and borax...

Will the resulting substance be “magnetic”?

![Image of materials](image.png) + ![Glue](image.png) + ![Borax](image.png) + ![Iron Filings](image.png) = ?
Lab Activities

Extracting DNA from Strawberries

“Disappearing” Glass Rod

Liquid or Solid?
Lab Activities

- Solar Powered Wind Bag
- Cloud in a Bottle
- Cell Pizza
- Making Observations
Lab Activities

Magnetic Slime

“Screaming” Balloons

Density Rainbow
Phenyldithiocarbamid/chemical PTC 2/29/19

Hypothesis
I do not believe I am a taster. I will not detect the chemical PTC from a piece of paper.

Experiment
I put a piece of paper in my mouth.

Observation & Collect Data
I could not taste PTC from the paper.
10 people tried & 4 people could taste it.
2 people could not.

Conclusion
I am not a taster. My conclusion was correctly predicted as stated in my hypothesis.
Student Successes

- Actively engaged with RLOs
- Used scientific method to complete labs
- Demonstrated understanding during in-class exercises, assessments, and practice tests
- All five students who took the science sub-test passed on the first attempt!
Student Enthusiasm

- Higher attendance
- Positive feedback
- Participation in labs even after passing the science sub-test
- “Attitudes towards science” survey

<table>
<thead>
<tr>
<th></th>
<th>Strongly Agree</th>
<th>Agree</th>
<th>Neither Agree nor Disagree</th>
<th>Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Before pilot) School should have more science lessons each week.</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>(End of pilot) School should have more science lessons each week.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Challenges

• Measurement: pre and post surveys were not collected from all the same students
• Continuity: uneven attendance hampered ability to include linked topics
• Excluded Topics: not all science topics lend themselves to hands-on lab work
• Test Prep: added lesson component
Beyond Science Encounters

- New students experiencing lab activities and RLOs
- ECRIF methodology being used across subjects
- Developed interactive lesson plans with group activities for social studies and math